
SFB/Transregio 32 Fluxpat Kampagne 2008

Dokumentation

Malte Christian, Rene Graßelt

Inhaltsverzeichnis

1	Einl	leitung											3
2		rumentalisierung											4
	2.1	Übersicht Sensoren	 										4
	2.2	Aufbau Station S3	 										Ę
	2.3	Aufbau Station S4	 										6
3	Met	adaten											7

Kapitel 1

Einleitung

Die folgende Dokumentation beschreibt die während der Fluxpat-Kampagne durchgeführten Messungen am Testfeld Merken über den verschiedenen Agrarflächen. Zunächst wird der Aufbau aller Messtürme im Jahr 2008 beschrieben. Des Weiteren erfolgt ein Beschreibung der Rohdaten, die der Loggerzugehörigkeit nach archiviert wurden. In diesem Teil der Dokumentation wird der Aufbau der Rohdaten beschrieben die am Messturm S3 von den Loggern SR7S3 und CR3000(3405) aufgezeichnet wurden.

Kapitel 2

Instrumentalisierung 2008

2.1 Übersicht Sensoren

Insgesamt befinden sich auf dem Messgelände 2 Messstationen, die Stationen S3, S4. Der Aufbau der Stationen während der Messkampagne Fluxpat im Jahr 2008 wird in den Tabellen 2.2 bis 2.3 dargestellt. Tabelle 2.1 gibt eine Übersicht über die verschiedenen, während der Fluxpat-Kampagne verwendeten, Sensoren und die von ihnen gemessen Größen. Nachfolgend werden die Position, die Vegetationsbedeckung and der Station sowie der Aufbau der Messtürme beschrieben.

Name	Erklärung	Parameter
CSAT3	3D Sonic Anemometer	Vertical und horizontale Turbulenz
		des Windes
		Schall- und Windgeschwindigkeit
Li7500	Openpath CO2/H2O Analyzer	CO2 und H2O Dichte in turbulenter Luft
Psychrometer	Selbstgebautes Psychrometer	Temperatur/Luftfeuchtigkeit
Anemometer	Schalenkreuzanemometer	Windgeschwindigkeit und Richtung
CNR1	Net Radiometer	Nettostrahlung
Bodenstab	Bodenstab	Bodentemperatur
Wippe	Niederschlagsgeber Thiesclima	Niederschlag
HMP45C	Temperature and RH Probe	Temperatur/relative Feuchte
HFP01SC	Heat Flux Plate	Bodenwärmestrom
CS616	Water Content Reflectometer	Volumetric Water Content
TCAVG	Thermocouple	Campbell extension for the Heat Flux Plate
N1		

Tabelle 2.1: Instrumentalisierung 2008

Aufbau Station S3 2.2

geograf. Koordinaten (ungenau) $50.504791\mathrm{N}/6.235108\mathrm{E}$, Höhe $161.927~\mathrm{m}$

Gauss Krüger (sehr genau): Hochwert 5634661.297 Rechtswert 2528040.917 $H\ddot{\mathrm{o}}\mathrm{he}_1\ 115.901$

Vegetationstyp (Standort/Umkreis 100m): \ddot{R} übe/ \ddot{R} übe

Tabelle 2.2 zeigt den Aufbau der Station S3.

Logger	Sensor	ID	Höhe [in cm]	Institut
CR7 S3	5 x Psychrometer	16		MIUB
		15		MIUB
		13		MIUB
		12		MIUB
		11		MIUB
	5 x Anemometer	4883		MIUB
		5035		MIUB
		5041		MIUB
		5123		MIUB
		5716		MIUB
	Bodenstab	S3	-2	MIUB
	(Temperatur)		-5	MIUB
			-10	MIUB
			-25	MIUB
			-50	MIUB
	Wippe	526	100	MIUB
CR3000(3405)	$CSAT3^1$	1155	220	FZJ
	$Li7500^{2}$	0958	220	FZJ
	CNR1	071419		MIUB

Tabelle 2.2: Instrumentalisierung der Station S3 im Jahr 2008

 $^{^1}$ Azimuth=255° 2 15 cm hinter CSAT

2.3 Aufbau Station S4

geograf. Koordinaten (ungenau): 50.505354N/6.240161E, Höhe 159.716 m;

Gauss Krüger (sehr genau): Hochwert 5634836.197 Rechtswert 2528245.912 Höhe $_1$ 113.693

 ${\bf Vegetationstyp} \ ({\bf Standort/Umkreis} \ {\bf 100m}): {\bf Weizen/Weizen}$

Tabelle 2.3 zeigt den Aufbau der Station S4.

Logger	Sensor	ID	Höhe [in cm]	Institut
CR7 S4	5 x Psychrometer	6	800	MIUB
		4	615	MIUB
		3	425	MIUB
		2	230	MIUB
		1	125	MIUB
	5 x Anemometer	5782	800	MIUB
		5780	615	MIUB
		5779	425	MIUB
		5778	230	MIUB
		5777	125	MIUB
	Bodenstab	S4	-2	MIUB
	(Temperatur)		-5	MIUB
			-10	MIUB
			-25	MIUB
			-50	MIUB
	Wippe	527	100	MIUB
	Bodenstab	A125D101022	-10	MIUB
	(Bodenfeuchte)		-20	MIUB
			-30	MIUB
			-40	MIUB
			-50	MIUB
CR3000(2338)	CSAT3 ¹	1201-1	250	MIUB
	$Li7500^{2}$	1127	250	FZJ
CR3000(1113)	$CSAT3^1$	1521	950	MIUB
	$Li7500^{2}$	0987	950	MIUB
	CNR1	071340	170	MIUB

Tabelle 2.3: Instrumentalisierung der Station S4 im Jahr 2008

Kapitel 3

Metadaten

Im folgenden wird der Aufbau der Rohdaten beschrieben sowie deren Umrechnung mit Kalibrationskonstanten in Standardwerte.

Messturm S3:

Die Daten sind zunächst nach Loggerzugehörigkeit in der TR32 Database wie folgt abgespeichert:

 ${\rm CR7S3}_2008.tar.gz$

3405 S3 2008.tar.gz

Entpacken lassen sich die Daten unter Linux mit dem Befehl:

tar xfvz [ARCHIV].tar.gz

Unter Windows gibt es dafür tools wie z.B.:

TUGZip (www.tugzip.de)

Nach dem entpacken erscheinen im Ordner der Logger CR7S3 und 3405_S3 Dateien im Format ASCII:

CR7S3 / CR7S3 / raw...

 ${\rm CR3000(3405)} \ / {\bf 3405_S3/eddyraw.../cnrraw...}$

Tablle 2.2 zeigt den Inhalt der Messungen nach Loggerzugehörigkeit der Station S3 im Jahr 2008. Tabelle 3.1 beschreibt die Rohdatensätze die aus den Loggern CR7S3 und CR3000(3405) ausgelesen und abgespeichert wurden. Dabei enthält die jeweilige Rohdatei die in Tabelle 3.1 aufgeführt ist, die Daten

des in derselben Zeile angegeben Messzeitraumes.

Gemessen wurde am Messfeld Merken im Zeitraum 06.08.2008 bis 10.10.2008. Während des Zeitraums 06.08.2008 bis 22.08.2008 sowie 22.08.2008 bis 04.09.2008 hat der Logger CR7S3 keine Daten aufgezeichnet. Der Grund waren Probleme mit der Stromversorgung des Messturms. Die Daten des Loggers CR7S3 liegen in einer Auflösung von 15 Minuten vor. Bezüglich der Daten des Loggers CR3000(3405) bezeichnen die Dateien cnrraw... die Strahlungsdaten gemessen mit dem CNR1. Diese Daten liegen in 1 Minuten Auflösung vor. Die eddyraw... Dateien beinhalten die Eddy-Co-Varianzmessungen in einer zeitlichen Auflösung von 20Hz. Die Zeitreihen des Loggers 3405 sind ebenfalls nicht kontinuierlich sondern enthalten einige Datenlücken während der Messkampagne. Diese sind dadurch gekennzeichnet das die Messzeiträume (Tab. 3.1) für den jeweiligen Logger nicht nahtlos aneinander knüpfen. Fehlwerte der Logger sind mit -9999 (CR7S3) und NAN (CR3000(3405)) besetzt.

Logger	Zeitraum	Rohdaten Dateiname
CR7S3	22.08.2008 - 22.08.2008	raw2208_2208
	04.09.2008 - 19.09.2008	raw0409_1909
	19.09.2008 - 10.10.2008	raw1909_1010
CR3000(3405)	06.08.2008 - 08.08.2008	$ m eddy-/cnrraw0608_0808$
	08.08.2008 - 13.08.2008	$eddy-/cnrraw0808_1308$
	13.08.2008 - 16.08.2008	$eddy-/cnrraw1308_1608$
	16.08.2008 - 25.08.2008	$eddy-/cnrraw1608_2508$
	25.08.2008 - 01.09.2008	$ m eddy-/cnrraw2508_0109$
	04.09.2008 - 08.09.2008	$ m eddy-/cnrraw0409_0809$
	08.09.2008 - 14.09.2008	$eddy-/cnrraw0809_1409$
	17.09.2008 - 22.09.2008	eddy-/cnrraw1709 2209
	22.09.2008 - 29.09.2008	$eddy-/cnrraw2209_2909$
	29.09.2008 - 30.09.2008	cnrraw2909_3009

Tabelle 3.1: Rohdaten des Messturms S3 ausgelesen aus dem Logger CR7 S3 und CR3000(3405)

Tabelle 3.2 zeigt den spaltenweisen Aufbau der Loggerrohdaten CR7S3 aus Tabelle 3.1. Die Variablen müssen jeweils mit Hilfe der Kalibrationskonstanten zu Standardwerten verarbeitet werden. Für die Temperaturen des Phsychrometers wurden Widerstände [in Ω] gemessen, für die Windgeschwindigkeit Pulse [in Hz] sowie für die Windrichtung Spannungen [in mV].

Die Variablen müssen jeweils durch Kalibrationskonstanten zu Standardwerten verarbeitet werden. Die Umrechnungen der Widerstände des Bodenstabes (S3) in Bodentemperaturen werden mit folgender Formel berechnet:

$$T = A * T_{bo} + B \tag{3.1}$$

wobei T der umgerechneten Temperatur und T_{bo} der gemessen Bodentemperatur (in Ω) entspricht sowie A und B den Kalibrationskonstanten des jeweiligen Messgerätes. Die Umrechnungen der Widerstände in Temperaturen für Trocken-

Input	Spalte	Parameter	Einheit	Beschreibung (ID des Gerätes)
222	1			
	2	$_{ m Jahr}$		Jahr der Messung
	3	DOY		Tag der Messung (Julianischer Tag)
	4	Stunde/Minute		Stunde/Minute der Messung
	5	Temperatur tr	$[\Omega]$	Trockentemperatur des Phsychrometer (16)
	6	Temperatur fe	$[\Omega]$	Feuchttemperatur des Phsychrometer (16)
	7	Temperatur tr	$[\Omega]$	Trockentemperatur des Phsychrometer (15)
	8	Temperatur fe	$[\Omega]$	Feuchttemperatur des Phsychrometer (15)
	9	Temperatur tr	$[\Omega]$	Trockentemperatur des Phsychrometer (13)
	10	Temperatur fe	$[\Omega]$	Feuchttemperatur des Phsychrometer (13)
	11	Temperatur tr	$[\Omega]$	Trockentemperatur des Phsychrometer (12)
	12	Temperatur fe	$[\Omega]$	Feuchttemperatur des Phsychrometer (12)
	13	Temperatur tr	$[\Omega]$	Trockentemperatur des Phsychrometer (11)
	14	Temperatur fe	$[\Omega]$	Feuchttemperatur des Phsychrometer (11)
	15	Temperatur bo 1	$[\Omega]$	Erdbodentemperatur Bodenstab (S3)
	16	Temperatur bo 2	$[\Omega]$	Erdbodentemperatur Bodenstab (S3)
	17	Temperatur bo 3	$[\Omega]$	Erdbodentemperatur Bodenstab (S3)
	18	Temperatur bo 4	$[\Omega]$	Erdbodentemperatur Bodenstab (S3)
	19	Temperatur bo 5	$[\Omega]$	Erdbodentemperatur Bodenstab (S3)
	20	LogBatt		Loggerbatterie
	21	VentBatt		Ventilatorbatterie
	22	Druck	[hPa]	Luftdrucksensor im Loggerkasten
	23	StrBil		nicht angeschlossen
	24	Wind 1	[Hz]	Windgeschwindigkeit des Anemometers (4883)
	25	Wind 2	[Hz]	Windgeschwindigkeit des Anemometers (5035)
	26	Wind 3	[Hz]	Windgeschwindigkeit des Anemometers (5041)
	27	Wind 4	[Hz]	Windgeschwindigkeit des Anemometers (5123)
	28	Wind 5	[Hz]	Windgeschwindigkeit des Anemometers (5716)
	29	Wind grad D1	[grad]	Windrichtung
	30	Wind grad SD1	[grad]	Windrichtung
	31			
111	1			
	2	$_{ m Jahr}$		Jahr der Messung
	3	DOY		Tag der Messung (Julianischer Tag)
	4	Stunde/Minute		Stunde/Minute der Messung
	5	Niederschlag	[.1mm]	Niederschlagsinput im Falle eines Ereignisses

Tabelle 3.2: Aufbau der Rohdaten-Datei aus dem Logger CR7 S3 (Tab.3.1)

und Feuchttemperaturen der Station S3 werden mit folgender Formel berechnet:

$$T = \frac{T_{tr/fe} - A}{B} \tag{3.2}$$

wobei T der umgerechneten Temperatur und $T_{tr/fe}$ der gemessen trocken/feucht - Temperatur (in Ω) entspricht sowie A und B den Kalibrationskonstanten des jeweiligen Messgerätes.

Die Kalibrationskonstanten für den Bodestab (S3) der Station S3 zeigt Tabelle 3.3. Für die Umrechnungskonstanten A und B wurden für die verschie-

denen Bodentemperaturen die Werte aus Tabelle 3.3 verwendet. Die Kalibrati-

Parameter	Höhe [cm]	A	В
Temperatur bo 1	-2	2.5900	-259.3031
Temperatur bo 2	-5	2.5862	-259.0127
Temperatur bo 3	-10	2.5779	-258.0042
Temperatur bo 4	-25	2.5981	-259.3610
Temperatur bo 5	-50	2.5838	-258.5373

Tabelle 3.3: Umrechnungskonstanten Bodenmessstab der Station S3

onskonstanten für die Phsychrometer der Station S3 zeigt Tabelle 3.4. Für die Feucht/Trockentemperatur werden die Umrechnungskonstanten A und B aus Tabelle 3.4 verwendet.

Parameter	ID	A	В
T_{tr1}	16	99.8	0.394
T_{fe1}	16	99.8	0.394
T_{tr2}	15	99.8	0.384
T_{fe2}	15	99.8	0.384
T_{tr3}	13	99.8	0.384
T_{fe3}	13	99.8	0.384
T_{tr4}	12	99.8	0.394
T_{fe4}	12	99.8	0.384
T_{tr6}	11	99.8	0.384
T_{fe6}	11	99.8	0.384

Tabelle 3.4: Umrechnungskonstenten Psychrometer der Station S3

Die Umrechnung der Rohwerte der Windanemometer werden entsprechend der Formel:

$$v_c = \frac{v_r}{48.3 \cdot 15} + 0.2 \tag{3.3}$$

vorgenommen. Wobei v_r dem gemessen Rohwert entspricht v_c dem umgerechneten Messwert in m/s.

Den spaltenweisen Aufbau der Rohdaten ausgelesen aus den Logger CR3000(3405) gibt der Header der Rohdatei wieder. Bei diesen Rohdaten handelt es sich bereits um gemessen Standardwerte die nicht mit Kalibrationsparametern umgerechnet werden müssen. Fehlwerte werden in diesen Daten mit NAN bezeichnet.