Documentation - Understanding soil and plant interaction by combining ground-based quantitative electromagnetic induction and airborne hyperspectral data, doi:10.1029/2018GL078658

Note:	By downloading this dataset you accept adequate reference in case
Note.	
	this data will be discussed or used in any publication or
	presentation. Please use the following citation:
	von Hebel, Christian, Matveeva, Maria, et al. (2018): Data to
	Understanding soil and plant interaction by combining ground-
	based quantitative electromagnetic induction and airborne
	hyperspectral data. TR32DB. DOI 10.5880/TR32DB.31
Files:	Data:
	Following data correspond to ground-based apparent electrical conductivity
	(ECa):
	F13_EMI_ECa_HCPs35.dat
	F13_EMI_ECa_HCPs50.dat
	F13_EMI_ECa_HCPs71.dat
	F13_EMI_ECa_HCPs135.dat
	F13_EMI_ECa_HCPs180.dat
	F13_EMI_ECa_VCPs32.dat
	F13_EMI_ECa_VCPs71.dat
	F13_EMI_ECa_VCPs118.dat
	Following data correspond to depth-specific inverted electrical conductivity
	layers:
	F13_EMI_Inversion_Layer1_Sigma.dat
	F13_EMI_Inversion_Layer2_Sigma.dat
	F13_EMI_Inversion_Layer3_Sigma.dat
	F13_EMI_Inversion_Layer1_Thickness.dat
	F13_EMI_Inversion_Layer2_Thickness.dat
	Video showing the quasi-3D EMI inversion results:
	2018GL078658_F13_3LayerInversion.avi
	Following data correspond to airborne plant performance
	F13 PlantData F760.dat
	F13_PlantData_F687.dat
	F13_PlantData_NDVI.dat
	Six figures that show the approximate linear regressions between soil
	information (electrical conductivity property) and plant performance.
	Documentation:
	this file
	Additions_to_2018GL078658_and_Data.pdf
Provider:	B6 (C. von Hebel)
Language:	English
Date of publication	Article: 15/7/2018 , Data uploaded to TR32DB: 24/7/2018

Description:	The study site (~ 1.4 ha large agricultural field, termed F13, with south- western corner coordinate E: 320683, N: 5638407 in UTM Zone 32N) is close to Selhausen (Germany) and is part of the area of interest in teh Transregional Collaborative Research Center on Patterns in the Soil– Vegetation–Atmosphere System (SFB-TR32) (Simmer et al., 2015).
	The ground-based electromagnetic induction (EMI) measurements were performed using the three-coil CMD-MiniExplorer used with vertical coplanar (VCP) coils with separations (s) of 32, 71, and 118 cm and the six-coil CMD-MiniExplorer Special Edition used with horizontal coplanar (HCP) coils with s = 35, 50, 71, 97, 135, and 180 cm, see additions to documentation. Both instruments are manufactured by GF-Instruments (Brno, Czech Republic). A single frequency GPS delivered spatial coordinates with low accuracy (meter range) but good precision.
	The recorded high resolution georeferenced ECa values of the nine coil configurations were processed as follows (see also additions to documentation). A user-defined min-max filter was applied, following the histogram filter (von Hebel et al., 2014), and a rapid change filter. Remaining outliers were visually removed. Filtered data were smoothed. A nearest neighbor interpolation regridded the qualitative ECa to maps with a spatial resolution of 1x1 m and 10609 regular nodes.
	The ECa maps were calibrated to obtain quantitative EMI data. We used inverted vertical electrical sounding data to predict ECa and linear regression with measured ECa obtained calibration factors. These turned the qualitative data into quantitative EMI data for inversion. The HCPs97 data contained few negative data and were not considered. To invert, we used the Maxwell-based full physical electromagnetic induction forward model (Keller & Frischknecht, 1966; Wait, 1951) in the shuffled complex evolution algorithm (Duan et al., 1993). The misfit between modeled and real data was evaluated using the L1-norm without smoothing or damping. The parallelized horizontally layered quasi-3D three-layer inversion scheme (von Hebel et al., 2014) ran on the JURECA supercomputer (Krause & Thörnig, 2016).
	The airborne HyPlant push-broom spectrometer (Rascher et al. 2015) passively measures sun-induced fluorescence (F) data with 1x1 m spatial resolution. The DUAL module measures radiance from 380 nm to 2500 nm. The resolution is 3 nm and 10 nm in the VIS/NIR and SWIR region for this module, respectively. The highly accurate FLUO module measures radiance from 670 nm to 780 nm with 0.25 nm resolution. To obtain quantitative maps of F at wavelength 687nm and 760 nm, we used the improved Fraunhofer line depth (iFLD) approach (Wieneke et al., 2016), a modification of the 3FLD approach (Maier et al., 2003) further developed by Damm et al. (2015). After F retrieval a 2D digital (disk) filter that uses 2D convolution was applied to reduce noise, see additions to documentation. Additionally, we calculated NDVI.

Acknowledgements	We acknowledge SFB/TR32 'Pattern in Soil-Vegetation-Atmosphere
	Systems: Monitoring, Modelling and Data Assimilation' funded by DFG. We thank ESA funding the airborne fluorescence measurements, Contract 4000107143/12/NL/FF/If-CCN3. We thank TERENO and
	ACROSS, as well as the Jülich supercomputer center.
References: (in the order of description above)	Simmer, C., Thiele-Eich, I., Masbou, M., Amelung, W., Bogena, H. R., Crewell, S., et al. (2015), Monitoring and Modeling the Terrestrial System from Pores to Catchments: The Transregional Collaborative Research Center on Patterns in the Soil–Vegetation–Atmosphere System, <i>Bulletin of the American Meteorological Society</i> , <i>96</i> (10), 1765-1787.
	von Hebel, C., Rudolph, S., Mester, A., Huisman, J. A., Kumbhar, P., Vereecken, H., & van der Kruk, J. (2014), Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data, <i>Water Resources Research</i> , <i>50</i> , 2732–2748.
	Keller, G. V., & Frischknecht, F. C. (1966), Electrical methods of geophysical prospecting, International Series of Monographs in Electromagnetic Waves, Pergamon Press, Oxford, New York, 10.
	Wait, J. R. (1951), The magnetic diploe over the horizontally stratified earth, <i>Canadian Journal of Physics</i> , <i>29</i> (6), 577-592.
	Duan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993), Suffled complex evolution apporach for effective and efficient global minimization, <i>Journal of Optimization Theory and Applications, 76</i> (3), 501-521.
	Krause, D., & Thörnig, P. (2016), JURECA: General-purpose supercomputer at Jülich Supercomputing Centre, <i>Journal of large-scale research facilities</i> , <i>2</i> , A62.
	Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., et al. (2015), Sun-induced fluorescence – a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant, <i>Global Change Biology</i> , <i>21</i> (12), 4673-4684.
	Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., & Rascher, U. (2016), Airborne based spectroscopy of red and far-red sun- induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity, <i>Remote Sensing of Environment</i> , <i>184</i> , 654-667.
	Maier, S. W., Günther, K. P., & Stellmes, M. (2003), Sun-Induced Fluorescence: A New Tool for Precision Farming, in <i>Digital Imaging and Spectral Techniques:</i> <i>Applications to Precision Agriculture and Crop Physiology</i> , edited by J. Schepers & VanToai, T., pp. 209-222, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI.
	Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C., Hueni, A., Buchmann, N., et al. (2015), Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches, <i>Remote Sensing of</i> <i>Environment</i> , <i>166</i> , 91-105.